【Go】map的实现

点击阅读更多查看文章内容

设计原理

哈希函数

实现哈希表的关键点在于哈希函数的选择,哈希函数的选择在很大程度上能够决定哈希表的读写性能。在理想情况下,哈希函数应该能够将不同键映射到不同的索引上,这要求哈希函数的输出范围大于输入范围,但是由于键的数量会远远大于映射的范围,所以在实际使用时,这个理想的效果是不可能实现的。

完美哈希函数

perfect-hash-function

比较实际的方式是让哈希函数的结果能够尽可能的均匀分布,然后通过工程上的手段解决哈希碰撞的问题。哈希函数映射的结果一定要尽可能均匀,结果不均匀的哈希函数会带来更多的哈希冲突以及更差的读写性能。

不均匀哈希函数

bad-hash-function

如果使用结果分布较为均匀的哈希函数,那么哈希的增删改查的时间复杂度为 O(1);但是如果哈希函数的结果分布不均匀,那么所有操作的时间复杂度可能会达到 O(n)。


冲突解决

开放寻址法

开放寻址法是一种在哈希表中解决哈希碰撞的方法,这种方法的核心思想是依次探测和比较数组中的元素以判断目标键值对是否存在于哈希表中,如果我们使用开放寻址法来实现哈希表,那么实现哈希表底层的数据结构就是数组,不过因为数组的长度有限,向哈希表写入 (author, draven) 这个键值对时会从如下的索引开始遍历:

1
index := hash("author") % array.len

当我们向当前哈希表写入新的数据时,如果发生了冲突,就会将键值对写入到下一个索引不为空的位置:

open-addressing-and-set

如上图所示,当 Key3 与已经存入哈希表中的两个键值对 Key1 和 Key2 发生冲突时,Key3 会被写入 Key2 后面的空闲位置。当我们再去读取 Key3 对应的值时就会先获取键的哈希并取模,这会先帮助我们找到 Key1,找到 Key1 后发现它与 Key 3 不相等,所以会继续查找后面的元素,直到内存为空或者找到目标元素。

当需要查找某个键对应的值时,会从索引的位置开始线性探测数组,找到目标键值对或者空内存就意味着这一次查询操作的结束。

open-addressing-and-get

开放寻址法中对性能影响最大的是装载因子,它是数组中元素的数量与数组大小的比值。随着装载因子的增加,线性探测的平均用时就会逐渐增加,这会影响哈希表的读写性能。当装载率超过 70% 之后,哈希表的性能就会急剧下降,而一旦装载率达到 100%,整个哈希表就会完全失效,这时查找和插入任意元素的时间复杂度都是 O(n)的,这时需要遍历数组中的全部元素,所以在实现哈希表时一定要关注装载因子的变化。


拉链法

与开放地址法相比,拉链法是哈希表最常见的实现方法,大多数的编程语言都用拉链法实现哈希表,它的实现比较开放地址法稍微复杂一些,但是平均查找的长度也比较短,各个用于存储节点的内存都是动态申请的,可以节省比较多的存储空间。

实现拉链法一般会使用数组加上链表,不过一些编程语言会在拉链法的哈希中引入红黑树以优化性能,拉链法会使用链表数组作为哈希底层的数据结构,我们可以将它看成可以扩展的二维数组:

separate-chaing-and-set

如上图所示,当我们需要将一个键值对 (Key6, Value6) 写入哈希表时,键值对中的键 Key6 都会先经过一个哈希函数,哈希函数返回的哈希会帮助我们选择一个桶,和开放地址法一样,选择桶的方式是直接对哈希返回的结果取模:

1
index := hash("Key6") % array.len

选择了 2 号桶后就可以遍历当前桶中的链表了,在遍历链表的过程中会遇到以下两种情况:

  1. 找到键相同的键值对 — 更新键对应的值;
  2. 没有找到键相同的键值对 — 在链表的末尾追加新的键值对;

如果要在哈希表中获取某个键对应的值,会经历如下的过程:

separate-chaing-and-get

Key11 展示了一个键在哈希表中不存在的例子,当哈希表发现它命中 4 号桶时,它会依次遍历桶中的链表,然而遍历到链表的末尾也没有找到期望的键,所以哈希表中没有该键对应的值。

在一个性能比较好的哈希表中,每一个桶中都应该有 01 个元素,有时会有 23 个,很少会超过这个数量。计算哈希、定位桶和遍历链表三个过程是哈希表读写操作的主要开销,使用拉链法实现的哈希也有装载因子这一概念:装载因子:=元素数量÷桶数量

与开放地址法一样,拉链法的装载因子越大,哈希的读写性能就越差。在一般情况下使用拉链法的哈希表装载因子都不会超过 1,当哈希表的装载因子较大时会触发哈希的扩容,创建更多的桶来存储哈希中的元素,保证性能不会出现严重的下降。如果有 1000 个桶的哈希表存储了 10000 个键值对,它的性能是保存 1000 个键值对的 1/10,但是仍然比在链表中直接读写好 1000 倍。


内存模型

在源码中,表示 map 的结构体是 hmap,它是 hashmap 的“缩写”:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// A header for a Go map.
type hmap struct {
// 元素个数,调用 len(map) 时,直接返回此值
count int
flags uint8
// buckets 的对数 log_2
B uint8
// overflow 的 bucket 近似数
noverflow uint16
// 计算 key 的哈希的时候会传入哈希函数
hash0 uint32
// 指向 buckets 数组,大小为 2^B
// 如果元素个数为0,就为 nil
buckets unsafe.Pointer
// 等量扩容的时候,buckets 长度和 oldbuckets 相等
// 双倍扩容的时候,buckets 长度会是 oldbuckets 的两倍
oldbuckets unsafe.Pointer
// 指示扩容进度,小于此地址的 buckets 迁移完成
nevacuate uintptr
extra *mapextra // optional fields
}
  1. buckets:指向buckets数组的指针,数组大小为2^B,如果元素个数为0,它为nil.
  2. oldbuckets:如果发生扩容,oldbuckets是指向老的buckets数组的指针,老的buckets数组大小是新的buckets的1/2;非扩容状态下,它为ni1.
  3. hash0 是哈希的种子,它能为哈希函数的结果引入随机性,这个值在创建哈希表时确定,并在调用哈希函数时作为参数传入;
  4. oldbuckets 是哈希在扩容时用于保存之前 buckets 的字段,它的大小是当前 buckets 的一半;

buckets 是一个指针,最终它指向的是一个结构体:

1
2
3
type bmap struct {
tophash [abi.MapBucketCount]uint8
}

上面bmap结构是静态结构,在编译过程中runtime.bmap会拓展成以下结构体,

1
2
3
4
5
6
7
8
9
type bmap struct{
tophash [8]uint8
keys [8]keytype
// keytype由编译器编译时候确定
values [8]elemtype
// elemtype由编译器编译时候确定
overflow uintptr
//overflow的下一个bmap,overflow是uintptr而不是*bmap类型,保证bmap完全不含指针,是为了减少gc,溢出桶存储到extra字段中
}

bmap 就是我们常说的“桶”,桶里面会最多装 8 个 key,这些 key 之所以会落入同一个桶,是因为它们经过哈希计算后,哈希结果是“一类”的。在桶内,又会根据 key 计算出来的 hash 值的高 8 位来决定 key 到底落入桶内的哪个位置(一个桶内最多有8个位置)。

hashmap bmap

当 map 的 key 和 value 都不是指针,并且 size 都小于 128 字节的情况下,会把 bmap 标记为不含指针,这样可以避免 gc 时扫描整个 hmap。但是,我们看 bmap 其实有一个 overflow 的字段,是指针类型的,破坏了 bmap 不含指针的设想,这时会把 overflow 移动到 extra 字段来。

1
2
3
4
5
6
7
8
type mapextra struct {
// overflow[0] contains overflow buckets for hmap.buckets.
// overflow[1] contains overflow buckets for hmap.oldbuckets.
overflow [2]*[]*bmap

// nextOverflow 包含空闲的 overflow bucket,这是预分配的 bucket
nextOverflow *bmap
}

bmap 是存放 k-v 的地方,我们把视角拉近,仔细看 bmap 的内部组成。

bmap struct

上图就是 bucket 的内存模型,HOB Hash 指的就是 top hash。 注意到key 和value是各自放在一起的,并不是 key/value/key/value …这样的形式,当key和alue类型不一样的时候,key和value占用字节大小不一样,使用keylvalue这种形式可能会因为内存对齐导致内存空间浪费,所以Go采用key和value分开存储的设计,更节省内存空间

每个 bucket 设计成最多只能放 8 个 key-value 对,如果有第 9 个 key-value 落入当前的 bucket,那就需要再构建一个 bucket ,通过 overflow 指针连接起来。


创建map

从语法层面上来说,创建 map 很简单:

1
2
3
4
5
6
ageMp := make(map[string]int)
// 指定 map 长度
ageMp := make(map[string]int, 8)

// ageMp 为 nil,不能向其添加元素,会直接panic
var ageMp map[string]int

实际上底层调用的是 makemap 函数,主要做的工作就是初始化 hmap 结构体的各种字段,例如计算 B 的大小,设置哈希种子 hash0 等等。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
func makemap(t *maptype, hint int64, h *hmap, bucket unsafe.Pointer) *hmap {
// 省略各种条件检查...

// 找到一个 B,使得 map 的装载因子在正常范围内
B := uint8(0)
for ; overLoadFactor(hint, B); B++ {
}

// 初始化 hash table
// 如果 B 等于 0,那么 buckets 就会在赋值的时候再分配
// 如果长度比较大,分配内存会花费长一点
buckets := bucket
var extra *mapextra
if B != 0 {
var nextOverflow *bmap
buckets, nextOverflow = makeBucketArray(t, B)
if nextOverflow != nil {
extra = new(mapextra)
extra.nextOverflow = nextOverflow
}
}

// 初始化 hamp
if h == nil {
h = (*hmap)(newobject(t.hmap))
}
h.count = 0
h.B = B
h.extra = extra
h.flags = 0
h.hash0 = fastrand()
h.buckets = buckets
h.oldbuckets = nil
h.nevacuate = 0
h.noverflow = 0

return h
}

哈希函数

map 的一个关键点在于,哈希函数的选择。在程序启动时,会检测 cpu 是否支持 aes,如果支持,则使用 aes hash,否则使用 memhash。这是在函数 alginit() 中完成,位于路径:src/runtime/alg.go 下。


key定位过程

key 经过哈希计算后得到哈希值,共 64 个 bit 位(64位机,32位机就不讨论了,现在主流都是64位机),计算它到底要落在哪个桶时,只会用到最后 B 个 bit 位。还记得前面提到过的 B 吗?如果 B = 5,那么桶的数量,也就是 buckets 数组的长度是 2^5 = 32

例如,现在有一个 key 经过哈希函数计算后,得到的哈希结果是:

10010111 | 000011110110110010001111001010100010010110010101010 │ 01010

用最后的 5 个 bit 位,也就是 01010,值为 10,也就是 10 号桶。这个操作实际上就是取余操作,但是取余开销太大,所以代码实现上用的位操作代替。

再用哈希值的高 8 位,找到此 key 在 bucket 中的位置,这是在寻找已有的 key。最开始桶内还没有 key,新加入的 key 会找到第一个空位放入。

buckets 编号就是桶编号,当两个不同的 key 落在同一个桶中,也就是发生了哈希冲突。冲突的解决手段是用链表法:在 bucket 中,从前往后找到第一个空位。这样,在查找某个 key 时,先找到对应的桶,再去遍历 bucket 中的 key。

mapacess

上图中,假定 B = 5,所以 bucket 总数就是 2^5 = 32。首先计算出待查找 key 的哈希,使用低 5 位 00110,找到对应的 6 号 bucket,使用高 8 位 10010111,对应十进制 151,在 6 号 bucket 中寻找 tophash 值(HOB hash)为 151 的 key,找到了 2 号槽位,这样整个查找过程就结束了。

如果在 bucket 中没找到,并且 overflow 不为空,还要继续去 overflow bucket 中寻找,直到找到或是所有的 key 槽位都找遍了,包括所有的 overflow bucket。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
// ……

// 如果 h 什么都没有,返回零值
if h == nil || h.count == 0 {
return unsafe.Pointer(&zeroVal[0])
}

// 写和读冲突
if h.flags&hashWriting != 0 {
throw("concurrent map read and map write")
}

// 不同类型 key 使用的 hash 算法在编译期确定
alg := t.key.alg

// 计算哈希值,并且加入 hash0 引入随机性
hash := alg.hash(key, uintptr(h.hash0))

// 比如 B=5,那 m 就是31,二进制是全 1
// 求 bucket num 时,将 hash 与 m 相与,
// 达到 bucket num 由 hash 的低 8 位决定的效果
m := uintptr(1)<<h.B - 1

// b 就是 bucket 的地址
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))

// oldbuckets 不为 nil,说明发生了扩容
if c := h.oldbuckets; c != nil {
// 如果不是同 size 扩容(看后面扩容的内容)
// 对应条件 1 的解决方案
if !h.sameSizeGrow() {
// 新 bucket 数量是老的 2 倍
m >>= 1
}

// 求出 key 在老的 map 中的 bucket 位置
oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))

// 如果 oldb 没有搬迁到新的 bucket
// 那就在老的 bucket 中寻找
if !evacuated(oldb) {
b = oldb
}
}

// 计算出高 8 位的 hash
// 相当于右移 56 位,只取高8位
top := uint8(hash >> (sys.PtrSize*8 - 8))

// 增加一个 minTopHash
if top < minTopHash {
top += minTopHash
}
for {
// 遍历 bucket 的 8 个位置
for i := uintptr(0); i < bucketCnt; i++ {
// tophash 不匹配,继续
if b.tophash[i] != top {
continue
}
// tophash 匹配,定位到 key 的位置
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
// key 是指针
if t.indirectkey {
// 解引用
k = *((*unsafe.Pointer)(k))
}
// 如果 key 相等
if alg.equal(key, k) {
// 定位到 value 的位置
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
// value 解引用
if t.indirectvalue {
v = *((*unsafe.Pointer)(v))
}
return v
}
}

// bucket 找完(还没找到),继续到 overflow bucket 里找
b = b.overflow(t)
// overflow bucket 也找完了,说明没有目标 key
// 返回零值
if b == nil {
return unsafe.Pointer(&zeroVal[0])
}
}
}

函数返回 h[key] 的指针,如果 h 中没有此 key,那就会返回一个 key 相应类型的零值,不会返回 nil。

代码整体比较直接,没什么难懂的地方。跟着上面的注释一步步理解就好了。

这里,说一下定位 key 和 value 的方法以及整个循环的写法。

1
2
3
4
5
// key 定位公式
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))

// value 定位公式
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))

b 是 bmap 的地址,这里 bmap 还是源码里定义的结构体,只包含一个 tophash 数组,经编译器扩充之后的结构体才包含 key,value,overflow 这些字段。dataOffset 是 key 相对于 bmap 起始地址的偏移:

因此 bucket 里 key 的起始地址就是 unsafe.Pointer(b)+dataOffset。第 i 个 key 的地址就要在此基础上跨过 i 个 key 的大小;而我们又知道,value 的地址是在所有 key 之后,因此第 i 个 value 的地址还需要加上所有 key 的偏移。理解了这些,上面 key 和 value 的定位公式就很好理解了。

再说整个大循环的写法,最外层是一个无限循环,通过

b = b.overflow(t)

遍历所有的 bucket,这相当于是一个 bucket 链表。

当定位到一个具体的 bucket 时,里层循环就是遍历这个 bucket 里所有的 cell,或者说所有的槽位,也就是 bucketCnt=8 个槽位。整个循环过程:

mapacess loop

再说一下 minTopHash,当一个 cell 的 tophash 值小于 minTopHash 时,标志这个 cell 的迁移状态。因为这个状态值是放在 tophash 数组里,为了和正常的哈希值区分开,会给 key 计算出来的哈希值一个增量:minTopHash。这样就能区分正常的 top hash 值和表示状态的哈希值。

下面的这几种状态就表征了 bucket 的情况:

1
2
3
4
5
6
7
8
9
10
11
// 空的 cell,也是初始时 bucket 的状态
empty = 0
// 空的 cell,表示 cell 已经被迁移到新的 bucket
evacuatedEmpty = 1
// key,value 已经搬迁完毕,但是 key 都在新 bucket 前半部分,
// 后面扩容部分会再讲到。
evacuatedX = 2
// 同上,key 在后半部分
evacuatedY = 3
// tophash 的最小正常值
minTopHash = 4

源码里判断这个 bucket 是否已经搬迁完毕,用到的函数:

1
2
3
4
func evacuated(b *bmap) bool {
h := b.tophash[0]
return h > empty && h < minTopHash
}

只取了 tophash 数组的第一个值,判断它是否在 0-4 之间。对比上面的常量,当 top hash 是 evacuatedEmptyevacuatedXevacuatedY 这三个值之一,说明此 bucket 中的 key 全部被搬迁到了新 bucket。


遍历过程

本来 map 的遍历过程比较简单:遍历所有的 bucket 以及它后面挂的 overflow bucket,然后挨个遍历 bucket 中的所有 cell。每个 bucket 中包含 8 个 cell,从有 key 的 cell 中取出 key 和 value,这个过程就完成了。

但是,现实并没有这么简单。还记得前面讲过的扩容过程吗?扩容过程不是一个原子的操作,它每次最多只搬运 2 个 bucket,所以如果触发了扩容操作,那么在很长时间里,map 的状态都是处于一个中间态:有些 bucket 已经搬迁到新家,而有些 bucket 还待在老地方。

因此,遍历如果发生在扩容的过程中,就会涉及到遍历新老 bucket 的过程,这是难点所在。

假设我们有下图所示的一个 map,起始时 B = 1,有两个 bucket,后来触发了扩容(这里不要深究扩容条件,只是一个设定),B 变成 2。并且, 1 号 bucket 中的内容搬迁到了新的 bucket,1 号裂变成 1 号3 号0 号 bucket 暂未搬迁。老的 bucket 挂在在 *oldbuckets 指针上面,新的 bucket 则挂在 *buckets 指针上面。

map origin

这时,我们对此 map 进行遍历。假设经过初始化后,startBucket = 3,offset = 2。于是,遍历的起点将是 3 号 bucket 的 2 号 cell,下面这张图就是开始遍历时的状态:

map init

标红的表示起始位置,bucket 遍历顺序为:3 -> 0 -> 1 -> 2。

因为 3 号 bucket 对应老的 1 号 bucket,因此先检查老 1 号 bucket 是否已经被搬迁过。判断方法就是:

1
2
3
4
func evacuated(b *bmap) bool {
h := b.tophash[0]
return h > empty && h < minTopHash
}

如果 b.tophash[0] 的值在标志值范围内,即在 (0,4) 区间里,说明已经被搬迁过了。(在扩容时tophash的每个位置都会更新,但是因为扩容是以桶为单位的,只需要检查第一个元素即可,如果第一个元素在(0,4)那么就表示该桶已经被搬迁了,不需要再检查其他的位置)

在本例中,老 1 号 bucket 已经被搬迁过了。所以它的 tophash[0] 值在 (0,4) 范围内,因此只用遍历新的 3 号 bucket。

依次遍历 3 号 bucket 的 cell,这时候会找到第一个非空的 key:元素 e。到这里,mapiternext 函数返回,这时我们的遍历结果仅有一个元素:

iter res

由于返回的 key 不为空,所以会继续调用 mapiternext 函数。

继续从上次遍历到的地方往后遍历,从新 3 号 overflow bucket 中找到了元素 f 和 元素 g。

遍历结果集也因此壮大:

iter res

新 3 号 bucket 遍历完之后,回到了新 0 号 bucket。0 号 bucket 对应老的 0 号 bucket,经检查,老 0 号 bucket 并未搬迁,因此对新 0 号 bucket 的遍历就改为遍历老 0 号 bucket。那是不是把老 0 号 bucket 中的所有 key 都取出来呢?

并没有这么简单,回忆一下,老 0 号 bucket 在搬迁后将裂变成 2 个 bucket:新 0 号、新 2 号。而我们此时正在遍历的只是新 0 号 bucket(注意,遍历都是遍历的 *bucket 指针,也就是所谓的新 buckets)。所以,我们只会取出老 0 号 bucket 中那些在裂变之后,分配到新 0 号 bucket 中的那些 key(lowbits == 00 )。

因此,lowbits == 00 的将进入遍历结果集:

iter res

和之前的流程一样,继续遍历新 1 号 bucket,发现老 1 号 bucket 已经搬迁,只用遍历新 1 号 bucket 中现有的元素就可以了。结果集变成:

iter res

继续遍历新 2 号 bucket,它来自老 0 号 bucket,因此需要在老 0 号 bucket 中那些会裂变到新 2 号 bucket 中的 key,也就是 lowbit == 10 的那些 key。

这样,遍历结果集变成:

iter res

最后,继续遍历到新 3 号 bucket 时,发现所有的 bucket 都已经遍历完毕,整个迭代过程执行完毕。

map 遍历的核心在于理解 2 倍扩容时,老 bucket 会分裂到 2 个新 bucket 中去。而遍历操作,会按照新 bucket 的序号顺序进行,碰到老 bucket 未搬迁的情况时,要在老 bucket 中找到将来要搬迁到新 bucket 来的 key。


赋值过程

向 map 中插入或者修改 key,最终调用的是 mapassign 函数。插入或修改 key 的语法是一样的,只不过前者操作的 key 在 map 中不存在,而后者操作的 key 存在 map 中。

整体来看,流程非常得简单:对 key 计算 hash 值,根据 hash 值按照之前的流程,找到要赋值的位置(可能是插入新 key,也可能是更新老 key),对相应位置进行赋值。

源码大体和之前讲的类似,核心还是一个双层循环,外层遍历 bucket 和它的 overflow bucket,内层遍历整个 bucket 的各个 cell。

首先会检查 map 的标志位 flags。如果 flags 的写标志位此时被置 1 了,说明有其他协程在执行“写”操作,进而导致程序 panic。这也说明了 map 对协程是不安全的。

通过前文我们知道扩容是渐进式的,如果 map 处在扩容的过程中,那么当 key 定位到了某个 bucket 后,需要确保这个 bucket 对应的老 bucket 完成了迁移过程。即老 bucket 里的 key 都要迁移到新的 bucket 中来(分裂到 2 个新 bucket),才能在新的 bucket 中进行插入或者更新的操作。

  • 如果当前写入的键对应的旧桶尚未迁移,则写入到旧桶
  • 如果旧桶已迁移,则写入到新桶

现在到了定位 key 应该放置的位置了,所谓找准自己的位置很重要。准备两个指针,一个(inserti)指向 key 的 hash 值在 tophash 数组所处的位置,另一个(insertk)指向 cell 的位置(也就是 key 最终放置的地址),当然,对应 value 的位置就很容易定位出来了。这三者实际上都是关联的,在 tophash 数组中的索引位置决定了 key 在整个 bucket 中的位置(共 8 个 key),而 value 的位置需要“跨过” 8 个 key 的长度。

在循环的过程中,inserti 和 insertk 分别指向第一个找到的空闲的 cell。如果之后在 map 没有找到 key 的存在,也就是说原来 map 中没有此 key,这意味着插入新 key。那最终 key 的安置地址就是第一次发现的“空位”(tophash 是 empty)。

如果这个 bucket 的 8 个 key 都已经放置满了,那在跳出循环后,发现 inserti 和 insertk 都是空,这时候需要在 bucket 后面挂上 overflow bucket。当然,也有可能是在 overflow bucket 后面再挂上一个 overflow bucket。这就说明,太多 key hash 到了此 bucket。

在正式安置 key 之前,还要检查 map 的状态,看它是否需要进行扩容。如果满足扩容的条件,就主动触发一次扩容操作。

这之后,整个之前的查找定位 key 的过程,还得再重新走一次。因为扩容之后,key 的分布都发生了变化。

最后,会更新 map 相关的值,如果是插入新 key,map 的元素数量字段 count 值会加 1;在函数之初设置的 hashWriting 写标志出会清零。


删除过程

删除操作底层的执行函数是 mapdelete

func mapdelete(t *maptype, h *hmap, key unsafe.Pointer)

它首先会检查 h.flags 标志,如果发现写标位是 1,直接 panic,因为这表明有其他协程同时在进行写操作。

计算 key 的哈希,找到落入的 bucket。检查此 map 如果正在扩容的过程中,直接触发一次搬迁操作。

删除操作同样是两层循环,核心还是找到 key 的具体位置。寻找过程都是类似的,在 bucket 中挨个 cell 寻找。找到对应位置后,对 key 或者 value 进行“清零”操作:

1
2
3
4
5
6
7
8
9
10
11
12
13
// 对 key 清零
if t.indirectkey {
*(*unsafe.Pointer)(k) = nil
} else {
typedmemclr(t.key, k)
}

// 对 value 清零
if t.indirectvalue {
*(*unsafe.Pointer)(v) = nil
} else {
typedmemclr(t.elem, v)
}

最后,将 count 值减 1,将对应位置的 tophash 值置成 Empty


扩容过程

使用哈希表的目的就是要快速查找到目标 key,然而,随着向 map 中添加的 key 越来越多,key 发生碰撞的概率也越来越大。bucket 中的 8 个 cell 会被逐渐塞满,查找、插入、删除 key 的效率也会越来越低。最理想的情况是一个 bucket 只装一个 key,这样,就能达到 O(1) 的效率,但这样空间消耗太大,用空间换时间的代价太高。

Go 语言采用一个 bucket 里装载 8 个 key,定位到某个 bucket 后,还需要再定位到具体的 key,这实际上又用了时间换空间。

当然,这样做,要有一个度,不然所有的 key 都落在了同一个 bucket 里,直接退化成了链表,各种操作的效率直接降为 O(n),是不行的。

因此,需要有一个指标来衡量前面描述的情况,这就是装载因子。Go 源码里这样定义 装载因子loadFactor := count / (2^B)

count 就是 map 的元素个数,2^B 表示 bucket 数量。

再来说触发 map 扩容的时机:在向 map 插入新 key 的时候,会进行条件检测,符合下面这 2 个条件,就会触发扩容:

  1. 装载因子超过阈值,源码里定义的阈值是 6.5。
  2. overflow 的 bucket 数量过多:当 B 小于 15,也就是 bucket 总数 2^B 小于 2^15 时,如果 overflow 的 bucket 数量超过 2^B;当 B >= 15,也就是 bucket 总数 2^B 大于等于 2^15,如果 overflow 的 bucket 数量超过 2^15。

通过汇编语言可以找到赋值操作对应源码中的函数是 mapassign,对应扩容条件的源码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// src/runtime/hashmap.go/mapassign

// 触发扩容时机
if !h.growing() && (overLoadFactor(int64(h.count), h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
}

// 装载因子超过 6.5
func overLoadFactor(count int64, B uint8) bool {
return count >= bucketCnt && float32(count) >= loadFactor*float32((uint64(1)<<B))
}

// overflow buckets 太多
func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
if B < 16 {
return noverflow >= uint16(1)<<B
}
return noverflow >= 1<<15
}

第 1 点:装载因子超过 6.5 时,表明很多 bucket 都快要装满了。

第 2 点:真实分配的 bucket 数量多,包括大量的 overflow bucket,元素很分散。

对于命中条件 1,2 的限制,都会发生扩容。但是扩容的策略并不相同,毕竟两种条件应对的场景不同。

  • 对于条件 1,元素太多,而 bucket 数量太少,很简单:将 B 加 1,bucket 最大数量(2^B)直接变成原来 bucket 数量的 2 倍。于是,就有新老 bucket 了。注意,这时候元素都在老 bucket 里,还没迁移到新的 bucket 来。而且,新 bucket 只是最大数量变为原来最大数量(2^B)的 2 倍(2^B * 2)。

  • 对于条件 2,其实元素没那么多,但是 overflow bucket 数特别多,说明很多 bucket 都没装满。解决办法就是开辟一个新 bucket 空间,将老 bucket 中的元素移动到新 bucket,使得同一个 bucket 中的 key 排列地更紧密。这样,原来,在 overflow bucket 中的 key 可以移动到 bucket 中来。结果是节省空间,提高 bucket 利用率,map 的查找和插入效率自然就会提升。

扩容具体执行:

再来看一下扩容具体是怎么做的。由于 map 扩容需要将原有的 key/value 重新搬迁到新的内存地址,如果有大量的 key/value 需要搬迁,会非常影响性能。因此 Go map 的扩容采取了一种称为“渐进式”地方式,原有的 key 并不会一次性搬迁完毕,每次最多只会搬迁 2 个 bucket

hashGrow() 函数实际上并没有真正地“搬迁”,它只是分配好了新的 buckets,并将老的 buckets 挂到了 oldbuckets 字段上。真正搬迁 buckets 的动作在 growWork() 函数中

growWork() 函数的动作是在 mapassign 和 mapdelete 函数中。也就是插入或修改、删除 key 的时候,都会尝试进行搬迁 buckets 的工作。先检查 oldbuckets 是否搬迁完毕,具体来说就是检查 oldbuckets 是否为 nil。

我们先看 hashGrow() 函数所做的工作,再来看具体的搬迁 buckets 是如何进行的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
func hashGrow(t *maptype, h *hmap) {
// B+1 相当于是原来 2 倍的空间
bigger := uint8(1)

// 对应条件 2
if !overLoadFactor(int64(h.count), h.B) {
// 进行等量的内存扩容,所以 B 不变
bigger = 0
h.flags |= sameSizeGrow
}
// 将老 buckets 挂到 buckets 上
oldbuckets := h.buckets
// 申请新的 buckets 空间
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger)

flags := h.flags &^ (iterator | oldIterator)
if h.flags&iterator != 0 {
flags |= oldIterator
}
// 提交 grow 的动作
h.B += bigger
h.flags = flags
h.oldbuckets = oldbuckets
h.buckets = newbuckets
// 搬迁进度为 0
h.nevacuate = 0
// overflow buckets 数为 0
h.noverflow = 0

// ……
}

主要是申请到了新的 buckets 空间,把相关的标志位都进行了处理:例如标志 nevacuate 被置为 0, 表示当前搬迁进度为 0。

再来看看真正执行搬迁工作的 growWork() 函数。

1
2
3
4
5
6
7
8
9
10
func growWork(t *maptype, h *hmap, bucket uintptr) {
// 确认搬迁老的 bucket 对应正在使用的 bucket
evacuate(t, h, bucket&h.oldbucketmask())

// 再搬迁一个 bucket,以加快搬迁进程
if h.growing() {
evacuate(t, h, h.nevacuate)
}
}

1
2
3
func (h *hmap) growing() bool {
return h.oldbuckets != nil
}

如果 oldbuckets 不为空,说明还没有搬迁完毕,还得继续搬。

接下来,我们集中所有的精力在搬迁的关键函数 evacuate,搬迁过程详细说明。

搬迁的目的就是将老的 buckets 搬迁到新的 buckets。而通过前面的说明我们知道,应对条件 1,新的 buckets 数量是之前的一倍,应对条件 2,新的 buckets 数量和之前相等。

  • 对于条件 2,从老的 buckets 搬迁到新的 buckets,由于 bucktes 数量不变,因此可以按序号来搬,比如原来在 0 号 bucktes,到新的地方后,仍然放在 0 号 buckets。

  • 对于条件 1,就没这么简单了。要重新计算 key 的哈希,才能决定它到底落在哪个 bucket。例如,原来 B = 5,计算出 key 的哈希后,只用看它的低 5 位,就能决定它落在哪个 bucket。扩容后,B 变成了 6,因此需要多看一位,它的低 6 位决定 key 落在哪个 bucket。这称为 rehash

map rehash

因此,某个 key 在搬迁前后 bucket 序号可能和原来相等,也可能是相比原来加上 2^B(原来的 B 值),取决于 hash 值 第 6 bit 位是 0 还是 1。

再明确一个问题:如果扩容后,B 增加了 1,意味着 buckets 总数是原来的 2 倍,原来 1 号的桶“裂变”到两个桶。

例如,原始 B = 2,1号 bucket 中有 2 个 key 的哈希值低 3 位分别为:010,110。由于原来 B = 2,所以低 2 位 10 决定它们落在 2 号桶,现在 B 变成 3,所以 010110 分别落入 2、6 号桶。

bucket split

evacuate 函数每次只完成一个 bucket 的搬迁工作,因此要遍历完此 bucket 的所有的 cell,将有值的 cell copy 到新的地方。bucket 还会链接 overflow bucket,它们同样需要搬迁。因此会有 2 层循环,外层遍历 bucket 和 overflow bucket,内层遍历 bucket 的所有 cell。

源码里提到 X, Y part,其实就是我们说的如果是扩容到原来的 2 倍,桶的数量是原来的 2 倍,前一半桶被称为 X part,后一半桶被称为 Y part。一个 bucket 中的 key 可能会分裂落到 2 个桶,一个位于 X part,一个位于 Y part。所以在搬迁一个 cell 之前,需要知道这个 cell 中的 key 是落到哪个 Part。很简单,重新计算 cell 中 key 的 hash,并向前“多看”一位,决定落入哪个 Part,这个前面也说得很详细了。

确定了要搬迁到的目标 bucket 后,搬迁操作就比较好进行了。将源 key/value 值 copy 到目的地相应的位置。

设置 key 在原始 buckets 的 tophash 为 evacuatedX 或是 evacuatedY,表示已经搬迁到了新 map 的 x part 或是 y part。新 map 的 tophash 则正常取 key 哈希值的高 8 位。

下面通过图来宏观地看一下扩容前后的变化。

扩容前,B = 2,共有 4 个 buckets,lowbits 表示 hash 值的低位。假设我们不关注其他 buckets 情况,专注在 2 号 bucket。并且假设 overflow 太多,触发了等量扩容(对应于前面的条件 2)。

扩容前

扩容完成后,overflow bucket 消失了,key 都集中到了一个 bucket,更为紧凑了,提高了查找的效率。

same size 扩容

假设触发了 2 倍的扩容,那么扩容完成后,老 buckets 中的 key 分裂到了 2 个 新的 bucket。一个在 x part,一个在 y 的 part。依据是 hash 的 lowbits。新 map 中 0-3 称为 x part,4-7 称为 y part。

2倍扩容

上面的两张图忽略了其他 buckets 的搬迁情况,表示所有的 bucket 都搬迁完毕后的情形。实际上,我们知道,搬迁是一个“渐进”的过程,并不会一下子就全部搬迁完毕。所以在搬迁过程中,oldbuckets 指针还会指向原来老的 []bmap,并且已经搬迁完毕的 key 的 tophash 值会是一个状态值,表示 key 的搬迁去向。


Golang的map为什么是无序的?

使用range多次遍历map时输出的key和vabue 的顺序可能不同。这是Go语言的设计者们有意为之,旨在提示开发者们,Go底层实现并不保证map遍历顺序稳定,请大家不要依赖range遍历结果顺序

  1. map在遍历时,并不是从固定的0号bucket开始遍历的,每次遍历,都会从一个随机值序号的bucket,再从其中随机的cell开始遍历
  2. map遍历时,是按序遍历bucket,同时按需遍历bucket中和其overflow bucket中的cell。但是map在扩容后,会发生key的搬迁,这造成原来落在一个buket中的Key,搬迁后,有可能会落到其他bucket中了,从这个角度看,遍历map的结果就不可能是按照原来的顺序了

map本身是无序的,且遍历时顺序还会被随机化,如果想顺序遍历map,需要对 map key先排序,再按照key 的顺序遍历map。


sync.map

Go 语言原生 map 并不是线程安全的,对它进行并发读写操作的时候,需要加锁。而 sync.map 则是一种并发安全的 map,在 Go 1.9 引入。

sync.map 是线程安全的,读取,插入,删除也都保持着常数级的时间复杂度。
sync.map 的零值是有效的,并且零值是一个空的 map。在第一次使用之后,不允许被拷贝。

一般情况下解决并发读写 map 的思路是加一把大锁,或者把一个 map 分成若干个小 map,对 key 进行哈希,只操作相应的小 map。前者锁的粒度比较大,影响效率;后者实现起来比较复杂,容易出错。

而使用 sync.map 之后,对 map 的读写,不需要加锁。并且它通过空间换时间的方式,使用 read 和 dirty 两个 map 来进行读写分离,降低锁时间来提高效率。

使用方式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
package main

import (
"fmt"
"sync"
)

func main() {
var m sync.Map
// 1. 写入
m.Store("qcrao", 18)
m.Store("stefno", 20)

// 2. 读取
age, _ := m.Load("qcrao")
fmt.Println(age.(int))

// 3. 遍历
m.Range(func(key, value interface{}) bool {
name := key.(string)
age := value.(int)
fmt.Println(name, age)
return true
})

// 4. 删除
m.Delete("qcrao")
age, ok := m.Load("qcrao")
fmt.Println(age, ok)

// 5. 读取或写入
m.LoadOrStore("stefno", 100)
age, _ = m.Load("stefno")
fmt.Println(age)
}

sync.map 适用于读多写少的场景。对于写多的场景,会导致 read map 缓存失效,需要加锁,导致冲突变多;而且由于未命中 read map 次数过多,导致 dirty map 提升为 read map,这是一个 O(N) 的操作,会进一步降低性能。

数据结构

1
2
3
4
5
6
type Map struct {
mu Mutex
read atomic.Value // readOnly
dirty map[interface{}]*entry
misses int
}

sync.Map 内部维护两个数据结构:

  • **read**:原子操作的只读 map,支持无锁读操作。
  • **dirty**:可写的 map,存储最新数据,写操作需要加锁。

这种设计将高频的读操作(无锁)和低频的写操作(加锁)分离,减少锁竞争。

读操作:

  • 优先访问 read无需加锁
  • read 中不存在目标键,则加锁访问 dirty,并记录未命中次数(misses),触发 dirtyread 的提升。

写操作:

  1. 读取 read 字段
    • 首先尝试从 read 中查找目标键。
  2. 检查 read 中是否存在目标键
    • 如果 read 中存在目标键,则尝试通过原子操作更新其值。
    • 如果更新成功,写操作完成。(注意即便 m.dirty 中也有该 key,由于都是通过指针指向,所以不需要再操作 m.dirty,其 value 也会保持最新的 entry 值。)
  3. 加锁并检查 dirty 字段
    • 如果 read 中不存在目标键,或者更新失败,则加锁(m.mu.Lock())并检查 dirty 字段。
  4. 更新 dirty 字段
    • 如果 dirty 中存在目标键,则直接更新其值。
    • 如果 dirty 中不存在目标键,则将键值对写入 dirty
  5. 处理 misses 计数器
    • 如果 read 中未找到目标键,则增加 misses 计数器。
    • misses 达到一定阈值时,将 dirty 提升为新的 read,并清空 dirty
  6. 解锁
    • 写操作完成后,释放锁(m.mu.Unlock())。

总结:

  • 读写操作时如果read中有对应的键,那么就直接读写read即可,无需进一步访问dirty(写操作更新read时,由于都是通过指针指向,所以不需要再操作 dirty,其 value 也会保持最新的 entry 值。)

  • 读写操作时如果read中没有对应的键,那么会去加锁读写dirty并记录misses的值,当misses达到阈值时将dirty提升为read

关键机制解析

  • entry 的原子操作
    每个键值对存储在 entry 结构体中,通过原子操作 atomic.LoadPointeratomic.StorePointer 保证线程安全。
  • dirty 的重建
    dirtynil 时,新的写操作会触发 dirty 的重建:将 read 中的所有有效条目复制到 dirty
  • misses 触发提升
    当读操作未命中 read 的次数(misses)超过 dirty 的长度时,dirty 会被提升为新的 read,此后读操作直接访问新 read
作者

ShiHaonan

发布于

2025-07-02

更新于

2025-08-28

许可协议

评论